Gene expression patterns of human colon tops and basal crypts and BMP antagonists as intestinal stem cell niche factors.
نویسندگان
چکیده
Human colonic epithelial cell renewal, proliferation, and differentiation are stringently controlled by numerous regulatory pathways. To identify genetic programs of human colonic epithelial cell differentiation in vivo as well as candidate marker genes that define colonic epithelial stem/progenitor cells and the stem cell niche, we applied gene expression analysis of normal human colon tops and basal crypts by using expression microarrays with 30,000 genes. Nine hundred and sixty-nine cDNA clones were found to be differentially expressed between human colon crypts and tops. Pathway analysis revealed the differential expression of genes involved in cell cycle maintenance and apoptosis, as well as genes in bone morphogenetic protein (BMP), Notch, Wnt, EPH, and MYC signaling pathways. BMP antagonists gremlin 1, gremlin 2, and chordin-like 1 were found to be expressed by colon crypts. In situ hybridization and RT-PCR confirmed that these BMP antagonists are expressed by intestinal cryptal myofibroblasts and smooth muscle cells at the colon crypt. In vitro analysis demonstrated that gremlin 1 partially inhibits Caco-2 cell differentiation upon confluence and activates Wnt signaling in normal rat intestinal epithelial cells. Collectively, the expression data set provides a comprehensive picture of human colonic epithelial cell differentiation. Our study also suggests that BMP antagonists are candidate signaling components that make up the intestinal epithelial stem cell niche.
منابع مشابه
Heterogeneity of the Level of Activity of Lgr5+ Intestinal Stem Cells
Intestinal stem cells (ISCs) are a group of rare cells located in the intestinal crypts which are responsible for the maintenance of the intestinal homeostasis and intestinal regeneration following injury or inflammation. Lineage tracing experiments in mice have proven that ISCs can repopulate the entire intestinal crypt. It is noteworthy that in such experiments, only a subset of intestinal cr...
متن کاملCharacterization of LGR5 stem cells in colorectal adenomas and carcinomas
LGR5 is known to be a stem cell marker in the murine small intestine and colon, however the localization of LGR5 in human adenoma samples has not been examined in detail, and previous studies have been limited by the lack of specific antibodies. Here we used in situ hybridization to specifically examine LGR5 mRNA expression in a panel of human adenoma and carcinoma samples (n = 66). We found th...
متن کاملHome Sweet Home: a Foxl1+ Mesenchymal Niche for Intestinal Stem Cells
he intestinal epithelium undergoes rapid and conTstant renewal accomplished by intestinal stem cells (ISCs) every 3–5 days. ISCs divide and give rise to highly proliferative transit-amplifying progenitor cells that differentiate into the multiple differentiated cell types present in the crypt and villus. ISCs reside in a microenvironment surrounded by epithelial and underlying mesenchymal cells...
متن کاملBalancing signals in the intestinal niche
T he intestinal tract faces an enormous amount of internal and external stress stimuli on a daily basis. In order to cope with these stress factors and prevent potential damage, the entire epithelium is being replaced every five days. The inner layer of the intestine consists of a single epithelial layer that displays extrusions called “villi” and invaginations known as “crypts”. Regeneration a...
متن کاملAge-related human small intestine methylation: evidence for stem cell niches
BACKGROUND The small intestine is constructed of many crypts and villi, and mouse studies suggest that each crypt contains multiple stem cells. Very little is known about human small intestines because mouse fate mapping strategies are impractical in humans. However, it is theoretically possible that stem cell histories are inherently written within their genomes. Genomes appear to record histo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 104 39 شماره
صفحات -
تاریخ انتشار 2007